Reduced Cognitive Function and Other Abnormalities in Pediatric Bipolar Disorder

January 6, 2016 · Posted in Course of Illness, Risk Factors · Comment 

pediatric bipolar disorderAt the 2015 meeting of the International Society for Bipolar Disorders, Ben Goldstein described a study of cognitive dysfunction in pediatric bipolar disorder. Children with bipolar disorder were three years behind in executive functioning (which covers abilities such as planning and problem-solving) and verbal memory.

There were other abnormalities. Youth with bipolar disorder had smaller amygdalas, and those with larger amygdalas recovered better. Perception of facial emotion was another area of weakness for children (and adults) with bipolar disorder. Studies show increased activity of the amygdala during facial emotion recognition tasks.

Goldstein reported that nine studies show that youth with bipolar disorder have reduced white matter integrity. This has also been observed in their relatives without bipolar disorder, suggesting that it is a sign of vulnerability to bipolar illness. This could identify children who could benefit from preemptive treatment because they are at high risk for developing bipolar disorder due to a family history of the illness.

There are some indications of increased inflammation in pediatric bipolar disorder. CRP, a protein that is a marker of inflammation, is elevated to a level equivalent to those in kids with juvenile rheumatoid arthritis before treatment (about 3 mg/L). CRP levels may be able to predict onset of depression or mania in those with minor symptoms, and is also associated with depression duration and severity. Goldstein reported that TNF-alpha, another inflammatory marker, may be elevated in children with psychosis.

Goldstein noted a study by Ghanshyam Pandey that showed that improvement in pediatric bipolar disorder was related to increases in BDNF, a protein that protects neurons. Cognitive flexibility interacted with CRP and BDNF—those with low BDNF had more cognitive impairment as their CRP increased than did those with high BDNF.

Obesity Linked to Illness Severity

December 28, 2015 · Posted in Risk Factors · Comment 

obesity linked to illness severity

In a talk at the 2015 meeting of the International Society for Bipolar Disorder, researcher David Bond reported that 75% of patients in a study of first episode mania had unhealthy body mass indices (BMIs). Forty percent were overweight while thirty-five percent were obese. Higher weight was associated with greater illness severity. Bond said that in other studies obesity has been associated with less time well and a greater risk of relapse into depression.

Obese patients also had lower brain volume, worse memory, and a greater risk of developing early onset dementia compared to other patients. Those who were overweight or obese had a 35% higher risk of developing Alzheimer’s disease.

In a different talk at the same meeting, researcher Roger McIntyre reported that among patients with bipolar disorder, those who were obese have greater cognitive problems and more evidence of inflammation than those who were not obese. He has seen indirect antidepressant effects and other health benefits following weight loss from bariatric surgery.

Output From the Amygdala Mediates Reward or Fear Memories

March 11, 2015 · Posted in Neurobiology · Comment 
synapse

synapse

 

People and animals can rapidly learn to associate environmental stimuli with positive or negative outcomes, learning what to approach or avoid as they go through daily life. The amygdala plays a role in this type of emotional learning, which can be disrupted by mood disorders. In new research, Praneeth Namburi and colleagues determined that activity at the synapses in the basolateral amygdala reveals differences in the creation of fear memories and reward memories.

In animals trained with reward and fear conditioning tasks, photostimulation of neurons that then travel from the basolateral amygdala complex to the nucleus accumbens (the brain’s reward center) is positively reinforcing, while photostimulation of neurons that will travel from the basolateral amygdala complex to the centromedial nucleus of the amygdala causes aversion. There are genetic differences between the two types of neurons, including a difference in the gene for the neurotensin-1 receptor. The researchers found that neurotensin, a neuropeptide, modulates glutamate’s effect on neurons, causing some to project to the nucleus accumbens and some to project to the centromedial nucleus of the amygdala.

The researchers wrote that the results “provide a mechanistic explanation, on both a synaptic and circuit level, for how positive and negative associations can be rapidly formed, represented, and expressed within the amygdala.”

Editor’s Note: The amygdala’s creation of opposing outputs may provide clues to the mechanisms behind mania (involving the nucleus accumbens) and depression (involving the centromedial nucleus of the amygdala).

Heart Attacks, Surgery Lead to Memory Impairment in Mice

March 10, 2015 · Posted in Risk Factors · Comment 

mouse

Events like surgery or heart attacks that cause inflammation can lead to cognitive deficits or depression for months or years afterward, even though the direct effects of inflammation wear off within weeks. In a recent study, Natalie Tronson and colleagues subjected mice to surgical heart attack, sham surgery, or no operation, and observed how well they absorbed new learning eight weeks later.

Both male and female mice had impairments in fear learning following surgical heart attacks. Female mice that received sham surgery also showed deficits in fear learning. When the researchers dissected the mice, analyzing their blood and hippocampi after the eight-week period, inflammatory cytokine measures had normalized as expected, but the researchers found other abnormalities.

Intracellular signaling was dysregulated, and there had been epigenetic changes in cells of the hippocampus. (Epigenetic changes refer to those that change the structure of DNA, such as how tightly it is wound, rather than its sequence. For example, the addition of acetyl groups to DNA or the histones around which it is wound.) The researchers observed increased histone acetylation and phospho-acetylation following the heart attacks.

The researchers concluded that a systemic inflammatory event, such as heart attack or surgery, can cause long-term memory impairment and changes in mood through epigenetic mechanisms. They compared the findings to those of other studies in which normal aging and memory-impairing treatments such as chemotherapy had also been associated with increases in histone acetylation or decreases in histone deacetylase activity.

Halting Marijuana Use Might Improve Memory

November 19, 2014 · Posted in Risk Factors · Comment 

teen smoking a joint

Researcher Amanda Roten reported at the 2014 meeting of the American Academy of Child and Adolescent Psychiatry that adolescents who stopped heavy marijuana use showed improvements in multiple areas of learning and memory. These data support previous findings that pot can cause impairments in cognitive functioning, but that abstaining from the drug can bring about improvement relative quickly.

These data contrast with some others. A 2009 study by J. Jacobus et al. in the journal Pharmacology Biochemistry and Behavior suggested that some changes in brain structure resulting from marijuana use, such as decreases in cortical volume, can persist for one to three months following abstinence.

Madeline Meier, another researcher at the meeting, reported that 1,037 participants who used marijuana persistently from about age 13 to age 38 lost an average of 8 IQ points. Controlling for years of education and other potential confounds such as alcohol and drug use did not affect these findings. Moreover, Meier found that “cessation of cannabis use did not fully restore IQ among adolescent-onset cannabis users.”

Editor’s Note: The popular view that marijuana is a benign substance overlooks some key facts. The main pharmacological effect of pot is an amotivational syndrome, causing apathy and lack of drive to participate in work, study, and other activities. Heavy use of pot doubles the risk of psychosis, and this risk is further increased if a user has a common genetic variation in the enzyme catechol-o-methlyl transferase (COMT), which metabolizes dopamine. The more efficient allele of COMT (known as val-56-val, identifying two valine amino acids) lowers frontal cortex dopamine more, and increases the risk of delusions and hallucinations. Marijuana alters brain structure and impairs memory. It may now be legal in some states, and while reducing penalties for smoking marijuana may be a good idea, this does not mean the drug is a harmless substance.

The moral of the story is that avoiding marijuana use in the first place, especially for people with bipolar disorder, should make it easier to get well and stay well. For current marijuana users, N-acetylcysteine (NAC, a nutritional supplement available without a prescription from health food stores) has been shown to help adolescents decrease marijuana use more than placebo.

Flavanols May Improve Age-Related Memory Loss

November 12, 2014 · Posted in Potential Treatments · Comment 

cocoa beans

Flavanols, which are found in small amounts in raw cocoa, tea leaves, fruits, and vegetables, may be able to improve age-related memory loss. The normal process by which chocolate is made removes all flavanols from cocoa, but the Mars Inc. company recently developed a process to isolate flavanol in powder form.

In a 2014 study by Scott Small et al. in Nature Neuroscience, of 37 participants between the ages of 50 and 69, those who were randomized to a high-flavanol diet (900mg per day, from drinking the powder mixed with water or milk) over a three-month period showed more improvement on a memory test than those participants who were randomized to a low-flavanol diet (10mg per day). The high-flavanol group both scored higher than the other group at the end of the study and showed more improvement relative to their own abilities at the start of the study. Small said that after three months of taking the flavanols, someone who began with a typical memory for a 60-year-old developed a memory more like a 30- or 40-year-old. The high-flavanol group also showed improvement in function in a part of the hippocampus called the dentate gyrus.

Memory Tips for Bipolar Disorder

September 29, 2014 · Posted in Resources · Comment 

memory aidLike cancer patients undergoing chemotherapy, patients with bipolar disorder often have memory problems, particularly if they have had many prior episodes. Some memory tips from CancerCare’s Chemobrain Information Series may also help patients with bipolar disorder remember things better and keep their memory sharp. Here are some of their tips:

Make lists. Carry a notepad with you, or use a smartphone to keep track of errands, shopping lists, daily tasks, and when you should take your medications.

Use a paper or electronic day planner or a personal organizer to keep track of appointments and special days like birthdays or anniversaries.

Use a wall calendar and hang it in a place that you will see it multiple times per day.

Carry a notebook and record everything you need to remember, including to-do lists; the dates, times, and addresses of appointments; important telephone numbers; and the names of people you meet and a brief description of them. You can also use the notebook to keep track of medical information: your medication schedule, any symptoms or side effects you are having, or questions to ask your doctor. You can also do this using an app like What’s My M3 or by downloading a personal mood charting calendar from our website.

Leave yourself a voicemail message to remember something important. When you listen to it later, write down the information.

Organize your home or office. Keep things in familiar places so you always know where to find them.

Avoid distractions. Find a quiet, uncluttered place to work or think where you can focus your attention for longer.

Have conversations in quiet places. This will help you concentrate better on what the other person is saying.

Repeat information aloud, and write down important points. If someone gives you information about an appointment, you might repeat the time, date, and location of the appointment out loud while righting it down.

Keep your mind active. You can use crossword puzzles, word or math games, or attend events about topics that interest you.

When writing, proofread. Double-check whether you’ve used the correct words and spellings.

Train yourself to focus through mindfulness. For example, if you keep misplacing your keys, pay extra attention each time you set down your keys. You may say aloud, “I’m putting my keys down on the counter.” Hearing the auditory cue can boost your memory.

Exercise, eat well, and get plenty of rest and sleep. These habits will help your memory work best.

Tell your loved ones that you are having memory problems, so that they’ll understand that you may forget things you may normally be able to remember. They can help you or encourage you.

Low Omega-3s in Children Associated with Poor Cognitive Performance

February 14, 2014 · Posted in Risk Factors · Comment 

girl eating fish

Omega-3 fatty acids (especially the type known as DHA) are essential for brain development and functioning, but most people eating a modern western diet consume low amounts of these compared to omega-6 fatty acids. Omega-3s are anti-inflammatory while omega-6s are pro-inflammatory. A large UK study published in the journal PLOS One in 2013 reported that healthy 7- to 9-year-olds with lower levels of omega-3 long-chain polyunsaturated fatty acids in their blood (including DHA, DPA, and EPA) had lower reading ability and working memory, and also had more behavior problems.

The oils in fish are the best source of omega-3 fatty acids, and most of the children with poor reading ability in the study fell short of the UK nutritional guideline that recommends eating two portions of fish per week.

Girls in the study had more dramatic deficits in omega-3 levels than boys. In adults, women tend to metabolize long chain polyunsaturated fatty acids more easily than men, but this difference is driven by hormones, and because the girls in the study had not yet reached child-bearing age, they did not reflect this benefit.

Omega-3 deficits in children have been connected with attention deficit hyperactivity disorder (ADHD), and supplementation with extra omega-3 fatty acids in the diet has led to improvements in ADHD.

Caffeine Improves Memory

February 10, 2014 · Posted in Potential Treatments · Comment 

cup of coffee

In a 2014 study published by Michael A. Yassa et al. in the journal Nature Neuroscience, a 200mg caffeine pill (about the equivalent of a strong cup of coffee) improved long-term recognition memory. One hundred sixty participants who were not regular coffee drinkers were shown a series of 200 pictures, and 24 hours later they were given a surprise test. Compared to participants who received a placebo, those participants who received 200mg of caffeine were better able to discriminate which pictures they had seen before and which ones were new. Participants who received 100mg of caffeine did not show this effect, while those who received 300mg showed the same improvement in memory but also experienced side effects such as headache and nausea.

As long as a cup of coffee does not make its drinker more anxious, it may help boost memory.

Editor’s Note: Coffee may have other benefits. In research collected by the Bipolar Collaborative Network (in which this editor is an investigator), patients who drank coffee were less likely to be overweight. Yassa also believes based on other research that caffeine is associated with a reduced risk for Alzheimer’s disease and that it increases longevity.

Exercise Helps Mice with Spacial Learning

February 6, 2014 · Posted in Current Treatments, Neurochemistry · Comment 

mice exercising

Exercise increases brain-derived neurotrophic factor (BDNF), a protein that protects neurons and is important for learning and memory. In a study of mice who were trained to find objects, sedentary mice could not discriminate between familiar object locations and novel ones 24 hours after receiving weak training, while mice who had voluntarily taken part in exercise over a 3-week period could easily distinguish between these locations after the weak training.

Mice who received sodium butyrate (NaB) after training behaved similarly well to those who had exercised. Sodium butyrate is a histone deacetylase (HDAC) inhibitor, meaning it helps keep acetyl groups on histones, around which DNA is wrapped, making the DNA easier to transcribe. In this case the easy transcription of DNA enables learning under conditions in which it might not usually take place.

Both sodium butyrate and exercise promote learning through their effects on BDNF in the hippocampus. They make the DNA for BDNF easier to transcribe, suggesting that exercise can put the brain in a state of readiness to create new or more lasting memories.

Next Page »